This guide demonstrates how to run the Meta Llama 3 8B Instruct model on Beam. Note that this is a gated Huggingface model, and you must request access to it.

View the Code

See the code for this example on Github.

Introduction

Meta Llama 3 8B Instruct is a powerful language model that requires access through Huggingface. Follow these steps to set up and deploy the model on Beam.

Prerequisites

  1. Request Access: Request access to the model here.
  2. Retrieve HF Token: Get your Huggingface token from this page.
  3. Save HF Token on Beam: Use the command beam secret create HF_TOKEN [TOKEN] to save your token.

Setup Remote Environment

The first thing we’ll do is set up an Image with the Python packages required for this app.

We use the if env.is_remote() flag to conditionally import the Python packages only when the script is running remotely on Beam.

from beam import endpoint, Image, Volume, env

# This ensures that these packages are only loaded when the script is running remotely on Beam
if env.is_remote():
    import torch
    from transformers import AutoModelForCausalLM, AutoTokenizer

# Model parameters
MODEL_NAME = "meta-llama/Meta-Llama-3-8B-Instruct"
MAX_LENGTH = 512
TEMPERATURE = 1.0
TOP_P = 0.95
TOP_K = 40
REPETITION_PENALTY = 1.0
NO_REPEAT_NGRAM_SIZE = 0
DO_SAMPLE = True

BEAM_VOLUME_PATH = "./cached_models"

# This runs once when the container first starts
def load_models():
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=BEAM_VOLUME_PATH)
    tokenizer.pad_token = tokenizer.eos_token
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        device_map="auto",
        torch_dtype=torch.float16,
        cache_dir=BEAM_VOLUME_PATH,
    )
    return model, tokenizer

Inference Function

Here’s the inference function. By adding the @endpoint() decorator to it, we can expose this function as a RESTful API.

Note the secrets argument which ensures the Huggingface token is loaded into the environment.

@endpoint(
    secrets=["HF_TOKEN"],
    on_start=load_models,
    name="meta-llama-3-8b-instruct",
    cpu=2,
    memory="32Gi",
    gpu="A100-40",
    image=Image(python_version="python3.9")
    .add_python_packages(
        [
            "torch",
            "transformers",
            "accelerate",
            "huggingface_hub[hf-transfer]",
        ]
    )
    .with_envs("HF_HUB_ENABLE_HF_TRANSFER=1"),
    volumes=[
        Volume(
            name="cached_models",
            mount_path=BEAM_VOLUME_PATH,
        )
    ],
)
def generate_text(context, **inputs):
    # Retrieve model and tokenizer from on_start
    model, tokenizer = context.on_start_value

    # Inputs passed to API
    messages = inputs.pop("messages", None)
    if not messages:
        return {"error": "Please provide messages for text generation."}

    generate_args = {
        "max_length": inputs.get("max_tokens", MAX_LENGTH),
        "temperature": inputs.get("temperature", TEMPERATURE),
        "top_p": inputs.get("top_p", TOP_P),
        "top_k": inputs.get("top_k", TOP_K),
        "repetition_penalty": inputs.get("repetition_penalty", REPETITION_PENALTY),
        "no_repeat_ngram_size": inputs.get("no_repeat_ngram_size", NO_REPEAT_NGRAM_SIZE),
        "do_sample": inputs.get("do_sample", DO_SAMPLE),
        "use_cache": True,
        "eos_token_id": tokenizer.eos_token_id,
        "pad_token_id": tokenizer.pad_token_id,
    }

    model_inputs = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    inputs = tokenizer(model_inputs, return_tensors="pt", padding=True)
    input_ids = inputs["input_ids"].to("cuda")
    attention_mask = inputs["attention_mask"].to("cuda")

    with torch.no_grad():
        outputs = model.generate(
            input_ids=input_ids, attention_mask=attention_mask, **generate_args
        )
        output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        return {"output": output_text}

Serving the API

In your shell, serve the API by running:

beam serve app.py:generate_text

This command will:

  • Spin up a container.
  • Run it with the specified CPU, memory, and GPU resources.
  • Sync your local files to the remote container.
  • Print a cURL request to invoke the API.
  • Stream logs to your shell.

Invoking the API

Once the API is running, you can invoke it using the following cURL command:

curl -X POST 'https://app.beam.cloud/endpoint/id/[ENDPOINT-ID]' \
-H 'Connection: keep-alive' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer [AUTH-TOKEN]' \
-d '{
    "messages": [
        {"role": "system", "content": "You are a yoda chatbot who always responds in yoda speak!"},
        {"role": "user", "content": "Who are you?"}
    ]
}'

Replace [ENDPOINT-ID] with your actual endpoint ID and [AUTH-TOKEN] with your authentication token.

Deploy to Production

The beam serve command is used for temporary APIs. When you’re ready to move to production, deploy a persistent endpoint:

beam deploy app.py:generate_text

Summary

You’ve successfully set up a highly performant serverless API for generating text using the Meta Llama 3 8B Instruct model on Beam.